LLM Integration Guide
How to use debtmap output in AI coding workflows.
Overview
Debtmap is designed to provide AI coding assistants with the signals they need to understand and fix technical debt. This guide covers:
- Output formats optimized for LLMs
- Context suggestions and how to use them
- Example workflows for different AI tools
- Interpreting signals for effective prompts
Output Formats
Markdown (Recommended)
The markdown format is specifically designed for LLM consumption:
debtmap analyze . --format markdown --top 5
Output structure:
# Technical Debt Analysis
## Summary
- Total items: 47
- Critical: 3
- High: 12
- Moderate: 20
- Low: 12
## Top Priority Items
### #1 [CRITICAL] parse_complex_input
**Location:** src/parser.rs:38-85
**Score:** 8.9/10
**Signals:**
| Metric | Value | Threshold |
|--------|-------|-----------|
| Cyclomatic | 12 | 10 |
| Cognitive | 18 | 15 |
| Coverage | 0% | 80% |
| Nesting | 4 | 3 |
**Context to read:**
- Primary: src/parser.rs:38-85
- Caller: src/handler.rs:100-120
- Caller: src/api.rs:45-60
- Test: tests/parser_test.rs:50-75
---
### #2 [CRITICAL] validate_auth
...
Why this format works:
- Consistent structure across all items
- Tables for easy metric comparison
- Context suggestions inline
- Minimal tokens for maximum information
JSON
For programmatic access and CI/CD integration:
debtmap analyze . --format json --output debt.json
Structure:
{
"version": "1.0",
"timestamp": "2024-01-15T10:30:00Z",
"summary": {
"total_items": 47,
"by_tier": {
"critical": 3,
"high": 12,
"moderate": 20,
"low": 12
},
"total_loc": 15420
},
"items": [
{
"rank": 1,
"id": "parse_complex_input_38",
"tier": "critical",
"score": 8.9,
"location": {
"file": "src/parser.rs",
"line_start": 38,
"line_end": 85,
"function": "parse_complex_input"
},
"metrics": {
"cyclomatic": 12,
"cognitive": 18,
"nesting": 4,
"loc": 47
},
"coverage": {
"line_percent": 0.0,
"branch_percent": 0.0
},
"context": {
"primary": "src/parser.rs:38-85",
"callers": [
{"file": "src/handler.rs", "lines": "100-120", "calls": 12},
{"file": "src/api.rs", "lines": "45-60", "calls": 8}
],
"tests": [
{"file": "tests/parser_test.rs", "lines": "50-75"}
]
}
}
]
}
Terminal
For human exploration (not recommended for AI piping):
debtmap analyze . --format terminal
Context Suggestions
Each debt item includes a context field that tells the AI exactly what code to read:
CONTEXT:
├─ Primary: src/parser.rs:38-85 (the debt item)
├─ Caller: src/handler.rs:100-120 (understands usage)
├─ Caller: src/api.rs:45-60 (understands usage)
├─ Callee: src/tokenizer.rs:15-40 (understands dependencies)
└─ Test: tests/parser_test.rs:50-75 (understands expected behavior)
Context Types
| Type | What It Contains | Why It Matters |
|---|---|---|
| Primary | The function with debt | Core code to understand/fix |
| Caller | Functions that call this | Usage patterns, constraints |
| Callee | Functions this calls | Dependencies, side effects |
| Test | Related test files | Expected behavior, test patterns |
| Type | Struct/enum definitions | Data structures being used |
Using Context Effectively
Minimal context (fastest):
# Just get the primary location
debtmap analyze . --format json | jq '.items[0].location'
Full context (most accurate):
# Read all suggested files
debtmap analyze . --format markdown --top 1
# Then have the AI read each file in the context section
Example Workflows
Claude Code Integration
Direct piping:
debtmap analyze . --format markdown --top 3 | claude "Fix the top item. Read the context files first."
Two-step workflow:
# Step 1: Get the analysis
debtmap analyze . --format markdown --lcov coverage.lcov --top 5 > debt.md
# Step 2: Send to Claude with context
cat debt.md | claude "
Read the context files for item #1 before making changes.
Then fix the debt item following these rules:
1. Add tests first
2. Refactor only after tests pass
3. Keep functions under 20 lines
"
Focused fix with coverage:
# Generate fresh coverage
cargo llvm-cov --lcov --output-path coverage.lcov
# Analyze with coverage
debtmap analyze . --format markdown --lcov coverage.lcov --top 1
# Send the top item to Claude
debtmap analyze . --format markdown --lcov coverage.lcov --top 1 | \
claude "Add tests for this function to reach 80% coverage"
Cursor Integration
Cursor works best with file-based context:
# Generate debt report
debtmap analyze . --format markdown --top 10 > .cursor/debt-report.md
# In Cursor, reference the report:
# @debt-report.md Fix the top critical item
Custom Agent Workflow
For building your own AI pipeline:
import json
import subprocess
# Run debtmap analysis
result = subprocess.run(
["debtmap", "analyze", ".", "--format", "json", "--top", "10"],
capture_output=True,
text=True
)
debt_data = json.loads(result.stdout)
# Process each item
for item in debt_data["items"]:
# Extract context files
context_files = []
context_files.append(item["context"]["primary"])
context_files.extend([c["file"] for c in item["context"].get("callers", [])])
# Read context files
context_content = ""
for file_spec in context_files:
file_path, lines = parse_file_spec(file_spec)
context_content += read_file_lines(file_path, lines)
# Build prompt
prompt = f"""
Fix this technical debt item:
Location: {item["location"]["file"]}:{item["location"]["line_start"]}
Function: {item["location"]["function"]}
Score: {item["score"]}/10
Signals:
- Cyclomatic complexity: {item["metrics"]["cyclomatic"]}
- Test coverage: {item["coverage"]["line_percent"]}%
Context code:
{context_content}
Instructions:
1. Add tests first
2. Refactor to reduce complexity
3. Keep the same public API
"""
# Send to your LLM
response = call_llm(prompt)
CI/CD Integration
GitHub Actions example:
name: Debt Analysis
on: [pull_request]
jobs:
analyze:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Install debtmap
run: cargo install debtmap
- name: Generate coverage
run: cargo llvm-cov --lcov --output-path coverage.lcov
- name: Analyze debt
run: |
debtmap analyze . --format json --lcov coverage.lcov > debt.json
- name: Check for critical items
run: |
CRITICAL=$(jq '.summary.by_tier.critical' debt.json)
if [ "$CRITICAL" -gt 0 ]; then
echo "::warning::Found $CRITICAL critical debt items"
fi
- name: Upload report
uses: actions/upload-artifact@v3
with:
name: debt-report
path: debt.json
Interpreting Signals
Severity Score (0-10)
The severity score combines multiple signals:
| Score | Tier | Interpretation |
|---|---|---|
| 8.0-10.0 | Critical | High complexity, no tests, high coupling |
| 5.0-7.9 | High | Moderate risk, coverage gaps |
| 2.0-4.9 | Moderate | Lower risk, monitor |
| 0.0-1.9 | Low | Acceptable state |
Complexity Signals
Cyclomatic complexity:
- 1-5: Simple, easy to test
- 6-10: Moderate, manageable
- 11-20: Complex, consider splitting
- 21+: Very complex, high priority
Cognitive complexity:
- Measures how hard code is to understand
- Penalizes nesting more than cyclomatic
- Higher values = harder to reason about
Nesting depth:
- 1-2: Normal
- 3: Getting complex
- 4+: Strongly consider refactoring
Coverage Signals
Line coverage:
- 0%: Critical gap, no tests at all
- 1-50%: Poor coverage
- 51-80%: Moderate coverage
- 81%+: Good coverage
Branch coverage:
- More important than line coverage
- Missing branches = missing edge cases
- 0% branch = high risk
Coupling Signals
Fan-in (callers):
- High fan-in = many dependents
- Changes affect many places
- Higher priority for stability
Fan-out (callees):
- High fan-out = many dependencies
- Complex testing requirements
- Consider dependency injection
Best Practices
For Effective AI Prompts
-
Always include context files
- AI makes better decisions with more context
- Context suggestions are curated for relevance
-
Specify your constraints
- “Keep the same public API”
- “Add tests before refactoring”
- “Functions must be under 20 lines”
-
One item at a time
- Focus on top priority item
- Complete fix before moving on
- Re-run analysis after changes
-
Verify with coverage
- Regenerate coverage after changes
- Run debtmap again to confirm improvement
- Track score reduction
For CI/CD Integration
-
Set appropriate thresholds
- Don’t fail on existing debt
- Fail on new critical items
- Track trends over time
-
Cache analysis results
- Use git-based caching
- Only re-analyze changed files
-
Integrate with PR comments
- Show debt impact of changes
- Suggest focus areas for review
Troubleshooting
Empty context suggestions
Cause: Call graph analysis couldn’t resolve callers/callees
Solution: Ensure file parsing succeeded:
debtmap analyze . -vv # Verbose mode shows parsing issues
Inconsistent scores between runs
Cause: Non-deterministic analysis (should not happen)
Solution: Report as a bug with reproducible example
Large context suggestions
Cause: High coupling in codebase
Solution: Use --max-context-lines to limit:
debtmap analyze . --format markdown --max-context-lines 300
API Reference
CLI Options for LLM Integration
| Option | Description |
|---|---|
--format markdown | LLM-optimized markdown output |
--format json | Structured JSON output |
--top N | Limit to top N items |
--lcov FILE | Include coverage data |
--min-score N | Filter items below score N |
--output FILE | Write to file instead of stdout |
JSON Schema
The JSON output follows a stable schema. See Output Formats for the complete schema definition.
Next Steps
- Configure analysis: See Configuration
- Understand metrics: See Metrics Reference
- View examples: See Examples